`
java-mans
  • 浏览: 11390493 次
文章分类
社区版块
存档分类
最新评论

高质量编程--C++函数的高级特性

 
阅读更多
  • 对比于C语言的函数,C++增加了重载(overloaded)、内联(inline)、const和virtual四种新机制。其中重载和内联机制既可用于全局函数也可用于类的成员函数,const与virtual机制仅用于类的成员函数。
    重载和内联肯定有其好处才会被C++语言采纳,但是不可以当成免费的午餐而滥用。本章将探究重载和内联的优点与局限性,说明什么情况下应该采用、不该采用以及要警惕错用。

8.1 函数重载的概念

8.1.1 重载的起源

  • 自然语言中,一个词可以有许多不同的含义,即该词被重载了。人们可以通过上下文来判断该词到底是哪种含义。“词的重载”可以使语言更加简练。例如“吃饭”的含义十分广泛,人们没有必要每次非得说清楚具体吃什么不可。别迂腐得象孔已己,说茴香豆的茴字有四种写法。
    在C++程序中,可以将语义、功能相似的几个函数用同一个名字表示,即函数重载。这样便于记忆,提高了函数的易用性,这是C++语言采用重载机制的一个理由。例如示例8-1-1中的函数EatBeef,EatFish,EatChicken可以用同一个函数名Eat表示,用不同类型的参数加以区别。

void EatBeef(...);       // 可以改为     void Eat(Beef ...);

void EatFish(...);       // 可以改为     void Eat(Fish ...);

void EatChicken(...);    // 可以改为     void Eat(Chicken ...);

  • 示例8-1-1 重载函数Eat
    C++语言采用重载机制的另一个理由是:类的构造函数需要重载机制。因为C++规定构造函数与类同名(请参见第9章),构造函数只能有一个名字。如果想用几种不同的方法创建对象该怎么办?别无选择,只能用重载机制来实现。所以类可以有多个同名的构造函数。

8.1.2 重载是如何实现的?

  • 几个同名的重载函数仍然是不同的函数,它们是如何区分的呢?我们自然想到函数接口的两个要素:参数与返回值。
    如果同名函数的参数不同(包括类型、顺序不同),那么容易区别出它们是不同的函数。

  • 如果同名函数仅仅是返回值类型不同,有时可以区分,有时却不能。例如:

void Function(void);

int  Function (void);

  • 上述两个函数,第一个没有返回值,第二个的返回值是int类型。如果这样调用函数:

    • int x = Function ();

    则可以判断出Function是第二个函数。问题是在C++/C程序中,我们可以忽略函数的返回值。在这种情况下,编译器和程序员都不知道哪个Function函数被调用。所以只能靠参数而不能靠返回值类型的不同来区分重载函数。编译器根据参数为每个重载函数产生不同的内部标识符。例如编译器为示例8-1-1中的三个Eat函数产生象_eat_beef、_eat_fish、_eat_chicken之类的内部标识符(不同的编译器可能产生不同风格的内部标识符)。

    • 如果C++程序要调用已经被编译后的C函数,该怎么办?

      假设某个C函数的声明如下:

      • void foo(int x, int y);

    该函数被C编译器编译后在库中的名字为_foo,而C++编译器则会产生像_foo_int_int之类的名字用来支持函数重载和类型安全连接。由于编译后的名字不同,C++程序不能直接调用C函数。C++提供了一个C连接交换指定符号extern“C”来解决这个问题。例如:

extern "C"
{

   void foo(int x, int y);

   ...// 其它函数

}

或者写成

extern "C"
{

   #include "myheader.h"

   ...// 其它C头文件

}

  • 这就告诉C++编译译器,函数foo是个C连接,应该到库中找名字_foo而不是找_foo_int_int。C++编译器开发商已经对C标准库的头文件作了extern“C”处理,所以我们可以用#include 直接引用这些头文件。

    • 注意并不是两个函数的名字相同就能构成重载。全局函数和类的成员函数同名不算重载,因为函数的作用域不同。例如:

    void Print(...);     // 全局函数

    class A

    {...
        void Print(...);    // 成员函数

    }

  • 不论两个Print函数的参数是否不同,如果类的某个成员函数要调用全局函数Print,为了与成员函数Print区别,全局函数被调用时应加‘::’标志。如:
    ::Print(…); // 表示Print是全局函数而非成员函数

8.1.3 当心隐式类型转换导致重载函数产生二义性

  • 示例8-1-3中,第一个output函数的参数是int类型,第二个output函数的参数是float类型。由于数字本身没有类型,将数字当作参数时将自动进行类型转换(称为隐式类型转换)。语句output(0.5)将产生编译错误,因为编译器不知道该将0.5转换成int还是float类型的参数。隐式类型转换在很多地方可以简化程序的书写,但是也可能留下隐患。

# include <iostream.h>

void output( int x);    // 函数声明

void output( float x);  // 函数声明

void output( int x)
{
    cout << " output int " << x << endl ;
}

void output( float x)
{
    cout << " output float " << x << endl ;
}

void main(void)
{
    int   x = 1;
    float y = 1.0;
    output(x);          // output int 1
    output(y);          // output float 1
    output(1);          // output int 1
//  output(0.5);        // error! ambiguous call, 因为自动类型转换
     output(int(0.5));   // output int 0
    output(float(0.5)); // output float 0.5
}

  • 示例8-1-3 隐式类型转换导致重载函数产生二义性

8.2 成员函数的重载、覆盖与隐藏

  • 成员函数的重载、覆盖(override)与隐藏很容易混淆,C++程序员必须要搞清楚概念,否则错误将防不胜防。

8.2.1 重载与覆盖

  • 成员函数被重载的特征:

(1)相同的范围(在同一个类中);

(2)函数名字相同;

(3)参数不同;

(4)virtual关键字可有可无。

  • 覆盖是指派生类函数覆盖基类函数,特征是:

(1)不同的范围(分别位于派生类与基类);

(2)函数名字相同;

(3)参数相同;

(4)基类函数必须有virtual关键字。

  • 示例8-2-1中,函数Base::f(int)与Base::f(float)相互重载,而Base::g(void)被Derived::g(void)覆盖。

#include <iostream.h>

class Base
{
public:

      void f(int x){ cout << "Base::f(int) " << x << endl; }

      void f(float x){ cout << "Base::f(float) " << x << endl; }

      virtual void g(void){ cout << "Base::g(void)" << endl;}
};

class Derived : public Base
{
public:

      virtual void g(void){ cout << "Derived::g(void)" << endl;}

};

void main(void)
{
      Derived  d;
      Base *pb = &d;
      pb->f(42);        // Base::f(int) 42
      pb->f(3.14f);     // Base::f(float) 3.14
      pb->g();          // Derived::g(void)
}

  • 示例8-2-1成员函数的重载和覆盖

8.2.2 令人迷惑的隐藏规则

  • 本来仅仅区别重载与覆盖并不算困难,但是C++的隐藏规则使问题复杂性陡然增加。这里“隐藏”是指派生类的函数屏蔽了与其同名的基类函数,规则如下:

(1)如果派生类的函数与基类的函数同名,但是参数不同。此时,不论有无virtual关键字,基类的函数将被隐藏(注意别与重载混淆)。

(2)如果派生类的函数与基类的函数同名,并且参数也相同,但是基类函数没有virtual关键字。此时,基类的函数被隐藏(注意别与覆盖混淆)。

  • 示例程序8-2-2(a)中:

(1)函数Derived::f(float)覆盖了Base::f(float)。

(2)函数Derived::g(int)隐藏了Base::g(float),而不是重载。

(3)函数Derived::h(float)隐藏了Base::h(float),而不是覆盖。

#include <iostream.h>

class Base
{
public:
    virtual void f(float x){ cout << "Base::f(float) " << x << endl; }

    void g(float x){ cout << "Base::g(float) " << x << endl; }

    void h(float x){ cout << "Base::h(float) " << x << endl; }
};
 
class Derived : public Base
{
public:

    virtual void f(float x){ cout << "Derived::f(float) " << x << endl; }

    void g(int x){ cout << "Derived::g(int) " << x << endl; }

    void h(float x){ cout << "Derived::h(float) " << x << endl; }
};

  • 示例8-2-2(a)成员函数的重载、覆盖和隐藏

    • 据作者考察,很多C++程序员没有意识到有“隐藏”这回事。由于认识不够深刻,“隐藏”的发生可谓神出鬼没,常常产生令人迷惑的结果。示例8-2-2(b)中,bp和dp指向同一地址,按理说运行结果应该是相同的,可事实并非这样。

void main(void)
{
    Derived  d;
    Base *pb = &d;
    Derived *pd = &d;
    // Good : behavior depends solely on type of the object
    pb->f(3.14f); // Derived::f(float) 3.14 
    pd->f(3.14f); // Derived::f(float) 3.14
    // Bad : behavior depends on type of the pointer
    pb->g(3.14f); // Base::g(float) 3.14 
    pd->g(3.14f); // Derived::g(int) 3        (surprise!)
    // Bad : behavior depends on type of the pointer
    pb->h(3.14f); // Base::h(float) 3.14      (surprise!)
    pd->h(3.14f); // Derived::h(float) 3.14 
}

  • 示例8-2-2(b) 重载、覆盖和隐藏的比较

8.2.3 摆脱隐藏

  • 隐藏规则引起了不少麻烦。示例8-2-3程序中,语句pd->f(10)的本意是想调用函数Base::f(int),但是Base::f(int)不幸被Derived::f(char *)隐藏了。由于数字10不能被隐式地转化为字符串,所以在编译时出错。

class Base
{
public:
    void f(int x);
};
 
class Derived : public Base
{
public:
    void f(char *str);
};

void Test(void)
{
    Derived *pd = new Derived;
    pd->f(10);    // error
}

  • 示例8-2-3 由于隐藏而导致错误
    • 从示例8-2-3看来,隐藏规则似乎很愚蠢。但是隐藏规则至少有两个存在的理由:

      写语句pd->f(10)的人可能真的想调用Derived::f(char *)函数,只是他误将参数写错了。有了隐藏规则,编译器就可以明确指出错误,这未必不是好事。否则,编译器会静悄悄地将错就错,程序员将很难发现这个错误,流下祸根。

      假如类Derived有多个基类(多重继承),有时搞不清楚哪些基类定义了函数f。如果没有隐藏规则,那么pd->f(10)可能会调用一个出乎意料的基类函数f。尽管隐藏规则看起来不怎么有道理,但它的确能消灭这些意外。

    示例8-2-3中,如果语句pd->f(10)一定要调用函数Base::f(int),那么将类Derived修改为如下即可。

class Derived : public Base
{
public:
    void f(char *str);
    void f(int x) { Base::f(x); }
};

8.3 参数的缺省值

  • 有一些参数的值在每次函数调用时都相同,书写这样的语句会使人厌烦。C++语言采用参数的缺省值使书写变得简洁(在编译时,缺省值由编译器自动插入)。
    参数缺省值的使用规则:

  • 【规则8-3-1】参数缺省值只能出现在函数的声明中,而不能出现在定义体中。

    • 例如:
      void Foo(int x=0, int y=0); // 正确,缺省值出现在函数的声明中
      void Foo(int x=0, int y=0) // 错误,缺省值出现在函数的定义体中
      {

      • ..

      }
      为什么会这样?我想是有两个原因:一是函数的实现(定义)本来就与参数是否有缺省值无关,所以没有必要让缺省值出现在函数的定义体中。二是参数的缺省值可能会改动,显然修改函数的声明比修改函数的定义要方便。

    【规则8-3-2】如果函数有多个参数,参数只能从后向前挨个儿缺省,否则将导致函数调用语句怪模怪样。

    • 正确的示例如下:

      void Foo(int x, int y=0, int z=0);

    错误的示例如下:

    • void Foo(int x=0, int y, int z=0);

    要注意,使用参数的缺省值并没有赋予函数新的功能,仅仅是使书写变得简洁一些。它可能会提高函数的易用性,但是也可能会降低函数的可理解性。所以我们只能适当地使用参数的缺省值,要防止使用不当产生负面效果。示例8-3-2中,不合理地使用参数的缺省值将导致重载函数output产生二义性。

#include <iostream.h>

void output( int x);

void output( int x, float y=0.0);

void output( int x)
{
    cout << " output int " << x << endl ;
}
 
void output( int x, float y)
{
    cout << " output int " << x << " and float " << y << endl ;
}
 
void main(void)
{
    int x=1;

    float y=0.5;

//  output(x);          // error! ambiguous call

    output(x,y);        // output int 1 and float 0.5
}

  • 示例8-3-2 参数的缺省值将导致重载函数产生二义性

8.4 运算符重载

8.4.1 概念

  • 在C++语言中,可以用关键字operator加上运算符来表示函数,叫做运算符重载。例如两个复数相加函数:
    Complex Add(const Complex &a, const Complex &b);

  • 可以用运算符重载来表示:

    • Complex operator +(const Complex &a, const Complex &b);

    运算符与普通函数在调用时的不同之处是:对于普通函数,参数出现在圆括号内;而对于运算符,参数出现在其左、右侧。例如:

    Complex a, b, c;
   ...
    c = Add(a, b); // 用普通函数
    c = a + b;        // 用运算符 +

  • 如果运算符被重载为全局函数,那么只有一个参数的运算符叫做一元运算符,有两个参数的运算符叫做二元运算符。

    • 如果运算符被重载为类的成员函数,那么一元运算符没有参数,二元运算符只有一个右侧参数,因为对象自己成了左侧参数。

      从语法上讲,运算符既可以定义为全局函数,也可以定义为成员函数。文献[Murray , p44-p47]对此问题作了较多的阐述。

      由于C++语言支持函数重载,才能将运算符当成函数来用,C语言就不行。我们要以平常心来对待运算符重载:

    (1)不要过分担心自己不会用,它的本质仍然是程序员们熟悉的函数。

    (2)不要过分热心地使用,如果它不能使代码变得更加易读易写,那就别用,否则会自找麻烦。

8.4.2 不能被重载的运算符

  • 在C++运算符集合中,有一些运算符是不允许被重载的。这种限制是出于安全方面的考虑,可防止错误和混乱。

  • (1)不能改变C++内部数据类型(如int,float等)的运算符。

    (2)不能重载‘.’,因为‘.’在类中对任何成员都有意义,已经成为标准用法。

    (3)不能重载目前C++运算符集合中没有的符号,如#,@,$等。原因有两点,一是难以理解,二是难以确定优先级。

    (4)对已经存在的运算符进行重载时,不能改变优先级规则,否则将引起混乱。

8.5 函数内联

8.5.1 用内联取代宏代码

  • C++ 语言支持函数内联,其目的是为了提高函数的执行效率(速度)。

    在C程序中,可以用宏代码提高执行效率。宏代码本身不是函数,但使用起来象函数。预处理器用复制宏代码的方式代替函数调用,省去了参数压栈、生成汇编语言的CALL调用、返回参数、执行return等过程,从而提高了速度。使用宏代码最大的缺点是容易出错,预处理器在复制宏代码时常常产生意想不到的边际效应。例如

    #define MAX(a, b) (a) > (b) ? (a) : (b)

语句

  • result = MAX(i, j) + 2 ;

将被预处理器解释为

  • result = (i) > (j) ? (i) : (j) + 2 ;

由于运算符‘+’比运算符‘:’的优先级高,所以上述语句并不等价于期望的

  • result = ( (i) > (j) ? (i) : (j) ) + 2 ;

如果把宏代码改写为

  • #define MAX(a, b) ( (a) > (b) ? (a) : (b) )

  • 则可以解决由优先级引起的错误。但是即使使用修改后的宏代码也不是万无一失的,例如语句

    • result = MAX(i++, j);

    将被预处理器解释为

    • result = (i++) > (j) ? (i++) : (j);

    对于C++ 而言,使用宏代码还有另一种缺点:无法操作类的私有数据成员。

    • 让我们看看C++ 的“函数内联”是如何工作的。对于任何内联函数,编译器在符号表里放入函数的声明(包括名字、参数类型、返回值类型)。如果编译器没有发现内联函数存在错误,那么该函数的代码也被放入符号表里。在调用一个内联函数时,编译器首先检查调用是否正确(进行类型安全检查,或者进行自动类型转换,当然对所有的函数都一样)。如果正确,内联函数的代码就会直接替换函数调用,于是省去了函数调用的开销。这个过程与预处理有显著的不同,因为预处理器不能进行类型安全检查,或者进行自动类型转换。假如内联函数是成员函数,对象的地址(this)会被放在合适的地方,这也是预处理器办不到的。

      C++ 语言的函数内联机制既具备宏代码的效率,又增加了安全性,而且可以自由操作类的数据成员。所以在C++ 程序中,应该用内联函数取代所有宏代码,“断言assert”恐怕是唯一的例外。assert是仅在Debug版本起作用的宏,它用于检查“不应该”发生的情况。为了不在程序的Debug版本和Release版本引起差别,assert不应该产生任何副作用。如果assert是函数,由于函数调用会引起内存、代码的变动,那么将导致Debug版本与Release版本存在差异。所以assert不是函数,而是宏。(参见6.5节“使用断言”)

8.5.2 内联函数的编程风格

  • 关键字inline必须与函数定义体放在一起才能使函数成为内联,仅将inline放在函数声明前面不起任何作用。如下风格的函数Foo不能成为内联函数:

     inline void Foo(int x, int y);     // inline仅与函数声明放在一起

     void Foo(int x, int y)
    {
        ...
     }

  • 而如下风格的函数Foo则成为内联函数:

     void Foo(int x, int y);     

    inline void Foo(int x, int y)  // inline与函数定义体放在一起
    {
        ...
    }

  • 所以说,inline是一种“用于实现的关键字”,而不是一种“用于声明的关键字”。一般地,用户可以阅读函数的声明,但是看不到函数的定义。尽管在大多数教科书中内联函数的声明、定义体前面都加了inline关键字,但我认为inline不应该出现在函数的声明中。这个细节虽然不会影响函数的功能,但是体现了高质量C++/C程序设计风格的一个基本原则:声明与定义不可混为一谈,用户没有必要、也不应该知道函数是否需要内联。
    定义在类声明之中的成员函数将自动地成为内联函数,例如

    class A
  {
   public:

        void Foo(int x, int y) { ... }     // 自动地成为内联函数
   }

  • 将成员函数的定义体放在类声明之中虽然能带来书写上的方便,但不是一种良好的编程风格,上例应该改成:

// 头文件

    class A
  {
   public:

        void Foo(int x, int y); 
   }

// 定义文件

    inline void A::Foo(int x, int y)
  {
        ...
   }

8.5.3 慎用内联

  • 内联能提高函数的执行效率,为什么不把所有的函数都定义成内联函数?

    如果所有的函数都是内联函数,还用得着“内联”这个关键字吗?

    内联是以代码膨胀(复制)为代价,仅仅省去了函数调用的开销,从而提高函数的执行效率。如果执行函数体内代码的时间,相比于函数调用的开销较大,那么效率的收获会很少。另一方面,每一处内联函数的调用都要复制代码,将使程序的总代码量增大,消耗更多的内存空间。以下情况不宜使用内联:

  • (1)如果函数体内的代码比较长,使用内联将导致内存消耗代价较高。

    (2)如果函数体内出现循环,那么执行函数体内代码的时间要比函数调用的开销大。

    • 类的构造函数和析构函数容易让人误解成使用内联更有效。要当心构造函数和析构函数可能会隐藏一些行为,如“偷偷地”执行了基类或成员对象的构造函数和析构函数。所以不要随便地将构造函数和析构函数的定义体放在类声明中。

      一个好的编译器将会根据函数的定义体,自动地取消不值得的内联(这进一步说明了inline不应该出现在函数的声明中)。

8.6 一些心得体会

  • C++ 语言中的重载、内联、缺省参数、隐式转换等机制展现了很多优点,但是这些优点的背后都隐藏着一些隐患。正如人们的饮食,少食和暴食都不可取,应当恰到好处。我们要辨证地看待C++的新机制,应该恰如其分地使用它们。虽然这会使我们编程时多费一些心思,少了一些痛快,但这才是编程的艺术。
分享到:
评论

相关推荐

    高质量C++-C编程指南

    第8章 C++函数的高级特性... 57 8.1 函数重载的概念... 57 8.2 成员函数的重载、覆盖与隐藏... 60 8.3 参数的缺省值... 63 8.4 运算符重载... 64 8.5 函数内联... 65 8.6 一些心得体会... 68 第9章 类的构造函数、析...

    高质量c++编程指南 第三版

    内容简介回到顶部↑高质量软件开发是国内...第12章 C++函数的高级特性 第13章 类的构造函数、析构函数与赋值函数 第14章 C++ STL应用 第15章 其它编程经验 参考文献及评注 第三部分 附录 附录 A:C++/C 试题

    高质量C++编程指南,提高C++编程质量

    高质量C++编程指南,有关C++内容知识,提高编程规范,排版,命名规则,函数设计,内存管理以及C++函数的高级特性,最后是其他的编程经验,大家值得一看!

    高质量C++/C编程指南--函数设计

    函数是C++/C程序的基本功能单元,其重要性不言而喻。函数设计的细微缺点很容易导致该函数被错用,所以光使函数的功能正确是不够的。本章重点论述函数的接口设计和内部实现的一些规则。

    高质量C++编程指南.PDF

    第8章 C++函数的高级特性 8.1 函数重载的概念 8.2 成员函数的重载、覆盖与隐藏 8.3 参数的缺省值 8.4 运算符重载 8.5 函数内联 8.6 一些心得体会 第9章 类的构造函数、析构函数与赋值函数 9.1 构造函数与析构函数的...

    高质量C/C++编程指南(PDF)

    第8 章 C++函数的高级特性 8.1 函数重载的概念. 8.2 成员函数的重载、覆盖与隐藏. 8.3 参数的缺省值. 8.4 运算符重载. 8.5 函数内联. 8.6 一些心得体会. 第9 章 类的构造函数、析构函数与赋值函数 9.1 构造函数与析...

    高质量C++C编程指南.PDF

    第 1 章 文件结构 第 2 章 程序的版式 第 3 章 命名规则 第 4 章 表达式和基 ...第 8 章 C++函数的高级特性 第 9 章 类的构造函数、析构函数与赋值函数 第 10 章 类的继承与组合. 第 11 章 其它编程经验

    高质量C++-C编程指南.htm

    第8章 C++函数的高级特性... 57 8.1 函数重载的概念... 57 8.2 成员函数的重载、覆盖与隐藏... 60 8.3 参数的缺省值... 63 8.4 运算符重载... 64 8.5 函数内联... 65 8.6 一些心得体会... 68 第9章 类的构造...

    高质量C/C++编程指南

    帮助我们写出漂亮、规范的代码 第1 章 文件结构 第2 章 程序的版式 第3 章 命名规则 ...第8 章 C++函数的高级特性 第9 章 类的构造函数、析构函数与赋值函数 第10 章 类的继承与组合 第11 章 其它编程经验

    高质量C++编程指南(林锐) DOC和PDF合集

    第8章 C++函数的高级特性 57 8.1 函数重载的概念 57 8.2 成员函数的重载、覆盖与隐藏 60 8.3 参数的缺省值 63 8.4 运算符重载 64 8.5 函数内联 65 8.6 一些心得体会 68 第9章 类的构造函数、析构函数与赋值函数 69 ...

    高质量C++编程指南-电子书

    本书各章:文件结构,程序的版式,命名规则,表达式与基本语句,常量,函数设计,内存管理,C++函数的高级特性,类的构造函数析构函数与赋值函数,类的继承与组合,其他编程经验。

    高质量C++/C编程指南

    高质量编程指南:讲述C++编码方面的一些质量规范,文件机构、程序版式、命名规则、常量定义、函数设计、内存管理、C++函数的高级特性、类的构造、析构和赋值函数、类的继承和组合、其它编程经验等

    高质量C++编程指南

    第8章 C++函数的高级特性 57 8.1 函数重载的概念 57 8.2 成员函数的重载、覆盖与隐藏 60 8.3 参数的缺省值 63 8.4 运算符重载 64 8.5 函数内联 65 8.6 一些心得体会 68 第9章 类的构造函数、析构函数与赋值函数 69 ...

    高质量C++编程指南.zip

    第8章 C++函数的高级特性 57 8.1 函数重载的概念 57 8.2 成员函数的重载、覆盖与隐藏 60 8.3 参数的缺省值 63 8.4 运算符重载 64 8.5 函数内联 65 8.6 一些心得体会 68 第9章 类的构造函数、析构函数与赋值函数 69 ...

    高质量编程C++、C

    第8章 C++函数的高级特性 8.1 函数重载的概念 8.2 成员函数的重载、覆盖与隐藏 8.3 参数的缺省值 8.4 运算符重载 8.5 函数内联 8.6 一些心得体会 第9章 类的构造函数、析构函数与赋值函数 9.1 构造函数与析...

    高质量 C++/C 编程指南

    第1章 文件结构 第2章 程序的版式 第3章 命名规则 第4章 表达式和基本语句 第5章 常量 第6章 函数设计 第7章 内存管理 第8章 C++函数的高级特性 第9章 类的构造函数、析构函数与...

    高质量C++编程指南 chm

    第8章 C++函数的高级特性... 57 8.1 函数重载的概念... 57 8.2 成员函数的重载、覆盖与隐藏... 60 8.3 参数的缺省值... 63 8.4 运算符重载... 64 8.5 函数内联... 65 8.6 一些心得体会... 68 第9章 类...

Global site tag (gtag.js) - Google Analytics